Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане



Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Содержание статьи

Смесительный для узел теплого пола

При устройстве водяного теплого пола используется различное количество конструктивных элементов, которые необходимы в обязательном порядке, или без которых система работает неправильно и не оптимально. К ним относится и смесительная группа для теплого пола. Для чего необходим этот элемент и возможно ли соорудить смесительный узел для теплого пола своими руками? Рассмотрим эти вопросы подробнее.

Необходимость смесительных узлов в системе теплого пола

При устройстве водяного отопления с использованием радиаторов или другого высокотемпературного оборудования, теплоноситель может на них подаваться практически любой температуры, которую способен выдать котел. Но ситуация с тёплыми полами кардинально отличается. По строительным нормам и здравому смыслу существует ограничение максимальной температуры поверхности пола. Превышение которой делает эксплуатацию системы не комфортной и даже опасной.

Например, по СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха» максимальная температура пола, в котором используется система встроенного подогрева не может превышать:

  • 26 °C для комнат с постоянным пребыванием людей;
  • 31 °C для комнат с временным пребыванием людей и некоторых зон крытых плавательных бассейнов;
  • 23 °C для дошкольных учреждений.

Эти ограничения затрудняют использование котла без смесительного узла для теплого пола. Так как без него теплоноситель неизбежно будет поднимать температуру теплого пола выше граничного значения. А температура теплоносителя может достигать уровня выше 80 °C.

Смесительный узел теплого пола в таком случае позволяет подавать в трубы теплоноситель оптимальной температуры. Принципиально ли его применение и можно ли выйти из положения без него?

Обязательность использования смесительных узлов

Как мы уже определились, основная цель смесительного узла – это поддерживать температуру воды в системе на требуемом уровне. Для этого берется часть воды от котла с повышенной температурой и смешивается с некоторым количеством воды из «обратки» до достижения требуемого уровня, который позволяет достичь оптимальной температуры пола.

Если исключить из схемы насосно-смесительный узел для теплого пола, то необходимо обеспечить поддержку температуры другим способом. Как вариант, возможно применение низкотемпературного котла, который способен обеспечивать температуру подаваемой воды в районе 35-38 °C, чтобы поддерживать требуемый нагрев пола. Чаще всего для этих целей рекомендуют электрокотлы. Также в таком режиме работают водяные тепловые насосы.

Схема теплого пола без смесительного узла

Схема теплого пола без смесительного узла.

Следует также иметь в виду, что теплый пол без смесительного узла практически невозможно использовать при комбинации напольного и радиаторного нагрева, так как для радиаторов температура должна быть достаточно высокой, чтобы обеспечивать оптимальную теплоотдачу. Если же теплый пол используется как основной источник, то при применении хорошего котла с подходящими характеристиками смесительный узел может не использоваться.

Итак, если необходимость смесительного узла не ставится под сомнение, как поступить в таком случае? Можно применить изделие заводского изготовления, которое рассчитано и протестировано для бесперебойной работы, но основным недостатком таких систем является их дороговизна.

Как вариант можно использовать самодельный смесительный узел для теплого пола. Основное его преимущество – существенно меньшая цена. В среднем, такой узел выходит в 3-4 раза дешевле, чем заводского изготовления, но возникают вопросы в его расчете и подборе элементов. Ведь при неправильном подборе теплый пол будет работать неравномерно или вообще его эксплуатация будет существенно затруднена.

Как создать своими руками смесительный узел? В общем, основные задачи при такой постановке вопроса сводятся к следующим пунктам:

  • выбрать схему и конструкцию смесительного узла;
  • подобрать необходимые элементы;
  • рассчитать производительность насоса и характеристики других изделий;
  • смонтировать узел.

Принципы монтажа ничем не отличаются от создания отопительной сети. Основное внимание нужно уделить расчету, выбору схемы и подбору оборудования.  На чем и будем акцентировать внимание далее.

Схемы смесительных узлов

Схема смесительного узла теплого пола разрабатывается таким образом, чтобы грамотно получить теплоноситель требуемой температуры. Все существующие современные схемы смесительных узлов разделяются на две большие группы:

  • параллельные;
  • последовательные.

Это разделение проходит по схеме движения теплоносителя. Чем отличаются оба типа?

Параллельные

Параллельная схема смесительного узла для теплого пола конструируется таким образом, что после смешения вода нужной температуры подается не только на сам тёплый пол, но и в контур отопительного прибора. Это накладывает особенности на функционирование. Так как часть подготовленного теплоносителя не попадает в сеть теплого пола, необходимо применение насоса большей производительности.

Параллельная схема теплого пола

Параллельная схема.

Последовательные

Для функционирования последовательной схемы необходим насос меньшей производительности, чем при использовании такой же схемы параллельного типа. Это связано с тем, что после смешения весь подготовленный объем теплоносителя циркулирует непосредственно в контуре теплого пола. В общем, такая схема более подходящая и чаще всего используется в современных условиях.

Последовательная схема теплого пола

Последовательная схема.

Для понимания разницы между каждой схемой можно ознакомиться с рисунками.

Элементы и комплектующие

Для создания всех описанных схем используется некоторое количество запорно-регулирующей арматуры и комплектующих. Часть элементов обязательна, такие как циркуляционный насос, часть используется при необходимости. В общем в большинстве изготавливаемых узлов применяют:

  • циркуляционный насос требуемой производительности;
  • регулировочный клапан (2-х или 3-х ходовой) с термоголовкой или термостатический клапан;
  • термометры подачи и обратного теплоносителя (не обязательно);
  • перепускные, балансировочные и запорные клапаны;
  • шаровые краны;
  • воздухоотводчики.

Основными элементами являются регулировочные клапаны и насос, работа которых и позволяет получить теплоноситель требуемой температура в необходимом количестве.

Клапаны и краны

Узел подмеса воды для теплого пола обязательно включает в себя клапанные краны. Рассмотрим особенности и сферу применения некоторых из них:

3-ходовой клапан представляет собой устройство, которое используется для смешивания, разделения, или переключения потоков воды или другого теплоносителя между собой. В применении к смесительным узлам их основная задача – создать смесь с необходимой температурой для подачи в сеть теплого пола с использованием горячего потока от котла и охлажденного теплоносителя из обратного трубопровода.

3-х ходовой клапан с термоголовкой

3-х ходовой клапан с термоголовкой.

Двухходовой клапан способен изменять расход теплоносителя из одного источника. То есть при его использовании регулируется поток. При уменьшении сечения клапана, объем проходящего через него теплоносителя уменьшается, а необходимое для работы насоса количество воды забирается из другого трубопровода.

2-х ходовой клапан

2-х ходовой клапан.

Любой из описанных клапанов представляет собой просто запорный механизм, регуляция которого возможна некоторыми методами. Самый простой – ручной, когда поток перекрывается с помощью вентиля. Но для смесительных узлов в теплых полах это практически не применяется, так как автономность такой системы сомнительна.

Чаще всего применяются термоголовки, которые автоматически регулируют степень открытия клапанов в зависимости от показаний термодатчика, который крепится к подающему или обратному трубопроводу. Возможно также использование сервоприводов.

Существуют также термостатические трехходовые клапана, к которым подсоединяются две ветки с разной температурой и из которых отходит теплоноситель с заранее выбранной температурой. В таком клапане регуляция температуры осуществляется встроенными в корпус прибора датчиками. В отличие от выносного датчика, как в термоголовках с 3-х ходовым клапаном.

Термостатический клапан

Термостатический трехходовый клапан

 

При выборе как 3-х ходового, так и двухходового клапана важно иметь представление о такой характеристики как пропускная способность (Kvs, Kv). Она означает, какой максимальный поток теплоносителя способен в полностью открытом положении пропустить через себя клапан при перепаде давления 1 Бар. Kvs клапана стандартизирован и указывается в характеристиках – 1,0, 1,6, 2,5, 4,0, 6,3, 10…

В общем Kvs зависит от расхода жидкости и перепада давления на клапане. Для этого используют формулу Kvs=G-√dp, где dp корень из перепада давления на клапане, G – расход воды.

Для примера можно сказать что для теплого пола площадью приблизительно 50 м² с потерей давления около 8 кПа обычно хватает клапана с Kvs 1.6. При аналогичной системе 150 м² и 10 кПа уже нужно использование трехходового клапана с Kvs 4.0.

Насос

Обязательным элементом смесительного узла является насосная группа для теплого пола, который подбирается таким образом, чтобы обеспечить подачу расчетного количества теплоносителя на теплый пол. При выборе также учитывается потери давления в самой длинной петле теплого пола. Потери зависят от длины ветки наличия кранов и вентилей, поворотов и других элементов, которые создают сопротивление движению теплоносителя. Для расчета удобно использовать специальные программы, которые разрабатывают производители теплых полов или использовать формулы из справочников.

Расчет теплоносителя в контуре теплого пола можно рассчитать по такой формуле:

Q=3600⋅P/c⋅(tп-tо), где P – мощность всех петель теплого пола; с – теплоемкость (для теплоносителя – воды она составляет 4,2 кДж/кг); tп и tо – расчетная температура подающего и обратного трубопровода. Обычно, разница не должна превышать 10 °C.

Например, при температуре подающего и обратного трубопроводов 35 и 25 °C, и мощности системы 8 кВт расход теплоносителя будет составлять: G=3600⋅8/4,2⋅(10) = 685 л/ч (0,685 м³/ч).

По найденному расходу и заранее рассчитанным потерям давления в сети по номограммам насосов выбираем модель требуемой производительности.

Выбор насоса

Выбор насоса по номограмме.

Для учета потерь давления необходимо провести гидравлический расчет теплого пола. Для этого учитывают много параметров – длину петель, диаметр, количество и характеристики всех местных сопротивлений (отводы, клапаны, повороты, и т. д.). Для упрощения расчета многие производители предоставляют специальные программы.

В общие потери входит:

  1. Потери давления в трубопроводе. Они зависят от длины самой протяженной петли теплого пола, скорости движения воды в ней и диаметра и материала трубы. Выше мы нашли общий расход теплоносителя, проходящий через насос. Его количество в каждой петле может разниться от характеристик коллектора, настроек регулирующих клапанов и т.д., но для приблизительного расчета можно использовать значение 0,04 л/мин. То есть, если у вас ветка длиной 50 м, то расход для нее должен составлять приблизительно 2 л/мин. По этому значению и по потере давления на одном метре используемого трубопровода находим общие потери давления в петле. Удельные потери давления на 1 метре трубопровода находятся по номограмме потерь для конкретной трубы, которую можно найти в документации к изделию. Если там указана для трубы удельная потеря в 1 Па, то на 50 м будет 50 Па. Таким же образом учитываем потери на каждом участке прямого трубопровода, входящем в наиболее нагруженную петлю.
  2. Потерь давления на каждом сопротивлении расчетного участка. Они находятся по формуле dP=S⋅(V²/2) ⋅r. Где dP – потери давления на всех местных сопротивлениях, S – сумма коэффициентов местных сопротивлений, V – скорость теплоносителя, r – плотность теплоносителя. Коэффициент местного сопротивления для каждого фитинга указан в документации к нему или в справочной литературе.  Учитывать нужно все клапана, тройники, и другие элементы.

Общие потери давления состоят из суммы потерь на трубопроводах и местных сопротивлениях. После того, как для конкретной сети подсчитаны все эти параметры, будут найдены общие потери, которые и служат основой для выбора насоса. Нужно иметь ввиду, что для давления используют несколько единиц, каждая их которых может быть указана в номограмме, а иногда и несколько сразу, например, килопаскали (кПа), метры водяного столба (Н). При необходимости их можно перевести по формуле — 1 метр водяного столба = 9,8 кПа.

Конструкции смесительных узлов

Рассмотренные выше схемы показывают лишь принцип циркуляции теплоносителя в отопительных контурах. Для каждой схемы используются разные конструкции смесительных узлов. Причем в каждой из двух типов существует довольно большое количество разнообразных конструкций которые используют разное оборудование и комплектации.

В общем, по конструкции все схемы смесительных узлов можно разделить на такие изделия:

  • на 3-ходовых клапанах;
  • на 2-ходовых клапанах.

Каждая из этих конструкций может быть изготовлена с использованием разных элементов в разной последовательности и с разным расположением. Так как последовательные схемы смесительных узлов более распространены и чаще применяются при самостоятельном изготовлении, больше внимания уделим им.

На 2-х ходовых клапанах

На 2-х ходовых клапанах также реализуют схемы с параллельным и последовательным смешением. Пример узла представлен на изображении.

Схема последовательного смешения с 2-х ходовым клапаном

Схема последовательного смешения с 2-х ходовым клапаном.

Выбор клапана и схемы расположения проводят в основном исходя из возможной компоновки узла, места для него и других характеристик системы. Нельзя сказать, что узел на 3-х ходовом клапане работает лучше, или наоборот.

На трехходовых клапанах

Если используется смеситель для теплого водяного пола на базе 3-х ходового клапана схема проектируется чаще всего как последовательная. В таком случае трехходовой клапан может быть установлен как на подающей ветке, так и на обратной.

Схема последовательного смешения с 3-х ходовым клапаном

Схема последовательного смешения с 3-х ходовым клапаном.

В первом случае он работает как клапан смесительного типа, в котором поток воды из обратного трубопровода смешивается с подающим и дальше прокачивается насосом в ветки теплого пола. При установке клапана на «обратке» он выполняет функции разделителя потока.

На перемычке между подающим и обратным трубопроводом возможна установка обратного клапана, который будет перекрывать поток в случае остановки насоса, но при открытом трехходовом. Такая ситуация возможна при реализации функции регулирования теплого пола насосом. Этот клапан также можно устанавливать и в схемах с двухходовым клапаном или в узле параллельного смешения.

Схема параллельного смешения с 3-х ходовым клапаном

Схема параллельного смешения с 3-х ходовым клапаном.

Для смешения и разделения используются два разных изделия, которые не взаимозаменяемы. Для маркировки на корпусе клапана указана схема движения воды.

Разделительный и смесительный клапаны

Разделительный и смесительный клапаны.

Регуляция температуры

Узел подмеса для теплого пола работает с грамотным контролем температуры. Для этого используются термоголовки, термодатчики от которых крепятся к подающему или обратному трубопроводу. Какой вариант лучше выбрать? Каждый из них отличается нюансами.

Если регуляция будет проходить по температуре подающего трубопровода, то в ветки теплого пола будет подаваться теплоноситель постоянной температуры. Если термодатчик установить на «обратке», то постоянной будет именно температура в обратном трубопроводе. Во втором варианте в зависимости от увеличения или уменьшения теплосъема, похолодания или потепления температура подающего теплоносителя будет меняться. При этом средняя температура самой поверхности пола обычно более равномерна, чем в первом варианте.

Многие производители теплотехнического оборудования представляют программные продукты, для упрощения выбора насосов, клапанов и других приборов. Без того, чтобы изучать сложные формулы и таблицы.

После того как выбрана схема, комбинация комплектующих и характеристики насосов и клапанов приступают к сборке с соблюдением всех норм монтажа отопительного оборудования.

Хорошая реклама

Самое читаемое



Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане

Смесительный узел для теплого пола на двухходовом клапане